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Engineering Perspective
e Design, analysis, implementation

e Basic concepts and techniques

Two Parts
e Hash functions
e MAC algorithms

Simplified View
e Small inaccuracies, details missing

e Incomplete study: citations missing
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Part I:
Hash Functions
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Hash Function

Hash Function h

o Generates a short “fingerprint” of a message

m Security Requirements

e One-way function:
given Y, hard to find m : h(m) =Y

e Collision resistant function:
h(m) hard to find m # m’ : h(m) = h(m’)

SHA-3 Competition (2008-2012)
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Permutation-Based Hash Functions

Hash Functions Based on Permutations
e Simpler to design: no key schedule

e Block-cipher-based: see later

4
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(Cryptographic) Permutation
e Provable security: statistical object (random permutation)

o Cryptanalysis: deterministic algorithm (no “distinguishers”)
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Hash Function Rate

Hash Function Rate «

data processed per permutation call (in bits)
e (Y =

permutation size (in bits)

e Note: various definitions of “rate” exist!
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Hash Function Rate

Hash Function Rate «
data processed per permutation call (in bits)

e = - . —
permutation size (in bits)

e Note: various definitions of “rate” exist!

Ideal Construction

e Rate-1 hash function: a =1
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Rate-1 Hash Function: First Attempt

Simplest Rate-1 Hash Function
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Rate-1 Hash Function: First Attempt

Collision: Correcting Block Attack
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Rate-1 Hash Function: Second Attempt

Another Rate-1 Hash Function

my my Mm2 ma
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Rate-1 Hash Function: Second Attempt

Observation

mq mq x T
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Rate-1 Hash Function: Second Attempt

Collision Attack (Black et al., Crypto '02)

mq mq x T

11/44



Impossibility Result

my

n n ﬂ n n
hi—1 fi ™ f2 hi

Black et al. (Eurocrypt '05)

e Compression function from n-bit permutation

e Information-theoretic: f1, fo can be any function

e Generic collision attack: at most n + [logy(n)] queries
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Security/Efficiency Tradeoffs
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Rogaway-Steinberger (Eurocrypt '08)
e Compression function from k n-bit permutations
e Information-theoretic: f; can be any function

e Generic collision attack: 2n[1—(m—0.55)/k]
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Security/Efficiency Tradeoffs
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Rogaway-Steinberger (Eurocrypt '08)

e Compression function from k = 3 n-bit permutations
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e Information-theoretic: f; can be any function, m =2, s=1

e Generic collision attack: 2n[1—(2-0.51)/3] — on/2
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Security/Efficiency Tradeoffs
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Mennink-Preneel (Crypto '12)
e Compression function from k = 3 n-bit permutations
e Constructions with only XORs, first systematic analysis

e Optimal collision resistance: 27/2
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Security/Efficiency Tradeoffs
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Why Not One Big Permutation?
e 2n-bit permutation instead of n-bit
e Same generic collision attack: 27/2

e More efficient than three n-bit permutations?
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Scaling Law

“When the input size of a symmetric-key primitive doubles,
the number of operations (roughly) doubles as well”.
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“When the input size of a symmetric-key primitive doubles,
the number of operations (roughly) doubles as well”.

Remarks
e Not intuitive: b — b bits: (2b)2b = 262" functions
e Not rigorous: based on design choices and attacks

e How to count “operations’?

Next Slides: Scaling Law Examples
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Scaling Law: Fixed Word Size

PHOTON: 4-bit Words
e 100/144/196/256-bit permutation: 12 rounds
e (288-bit permutation: 12 rounds, but 8-bit word size)
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Scaling Law: Fixed Word Size

PHOTON: 4-bit Words
e 100/144/196/256-bit permutation: 12 rounds
e (288-bit permutation: 12 rounds, but 8-bit word size)

Rijndael (256-bit key): 8-bit Words
e 128/192/256-bit block size: 14 rounds

Skein: 64-bit Words
e 256/512-bit block/key size: 72 rounds
e 1024-bit block/key size: 80 rounds

e Overdesign? Best (non-biclique) attack is on 36 rounds
(Yu et al., SAC '13)
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Scaling Law: Variable Word Size

BLAKE
e 960-to-256-bit: 14 rounds (32-bit words)
e 1920-to-512-bit: 16 rounds (64-bit words)
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Scaling Law: Variable Word Size

BLAKE
e 960-to-256-bit: 14 rounds (32-bit words)
e 1920-to-512-bit: 16 rounds (64-bit words)

SHA-2
o SHA-256: 768-to-256-bit: 64 rounds (32-bit words)
e SHA-512: 1536-to-512 bit: 80 rounds (64-bit words)

Keccak
e 800-bit permutation: 22 rounds (32-bit words)
e 1600-bit permutation: 24 rounds (64-bit words)

e Note: zero-sum distinguisher for full-round 1600-bit per-
mutation (Boura et al., Duan-Lai)
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Scaling Law: Counterexamples?

Grgstl
e 512-bit permutation: 10 rounds
e 1024-bit permutation: 14 rounds
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Scaling Law: Counterexamples?

Grgstl
e 512-bit permutation: 10 rounds
e 1024-bit permutation: 14 rounds
e Close! If 15 rounds: three small or one big: same cost
e Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

e b-bit permutation, » = b/2 rounds, b/4 S-boxes/round:
b?/8 S-boxes in total

e Four n-bit or one 2n-bit permutation: same cost

e 272-bit Spongent: 5x lower throughput than 256-bit
PHOTON (Bogdanov et al., IEEE Trans. Comp. 2013)
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Hash Functions with 22 Collision Resistance

Rate-1 Hash Function (a =1)
e Impossible (Black et al., Eurocrypt '05)

e Generic collision attack: at most n + [logy(n)]
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Hash Functions with 22 Collision Resistance

Rate-1 Hash Function (a =1)
e Impossible (Black et al., Eurocrypt '05)

e Generic collision attack: at most n + [logy(n)]

Rate-0.5 Hash Function (o = 0.5)
e Three n-bit permutations

e One 2n-bit permutation

Higher Rate Possible? (0.5 < a < 1)
e Yes, arbitrarily close to o = 1!

e See next slide...

21/44



Sponge Function

Sponge Function
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Example

e SHA3-256: ¢ = 512, r + ¢ = 1600, o = 0.68
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Concatenate-Permute-Truncate

Concatenate-Permute-Truncate

.Cg:L

r+c
m1 mo my
’]'(' ’n’ .« ’]T
+ > > > > h
07— U, W, (m)
Example

e Grindahl-256: » =32, r + ¢ = 416, o = 0.08
(Note: low «, but compensated by weak )
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Merkle-Damgard with Davies-Meyer 7?

Merkle-Damgéard with Davies-Meyer

e (Y = TL-"-C
m1 mo my
’]'(' ’n’ ... ’]T
fpel o p—> h
0~ | W, | p—> ’ (m)
Example

e SHA256: ¢ =256, r =512, a = 0.67
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Considerations

Lightweight
e Small hardware implementation
e Achieved by small permutation!

e Typically very low «
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Considerations

Lightweight
e Small hardware implementation
e Achieved by small permutation!

e Typically very low «

Simplicity
e e.g. JH: one 1024-bit permutation for all output sizes

e Downside: not best tradeoff for small outputs

Other Criteria

e Software: register pressure, instruction set, parallelism,...

e Hardware: throughput, latency, power, energy,...

e Both: message length, reuse of function/library, secure

implementation, interoperability, standards compliance,...
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Conclusion

Permutation-Based Hash Functions
e Engineering approach
e Tradeoffs for theory/cryptanalysis/implementation

e Simplified model: inaccuracies in figures, designs
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Conclusion

Permutation-Based Hash Functions
e Engineering approach
e Tradeoffs for theory/cryptanalysis/implementation

e Simplified model: inaccuracies in figures, designs

Goal
e Help to understand design choices
e No intention to critize certain designs!

e Feedback is welcome
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Part 1I:
MAC Algorithms
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Chaskey: An Efficient MAC Algorithm
for 32-bit Microcontrollers

Nicky Mouha!, Bart Mennink!, Anthony Van Herrewege!,
Dai Watanabe?, Bart Preneel', Ingrid Verbauwhede!

1ESAT/COSIC, KU Leuven and iMinds, Belgium
2Yokohama Research Laboratory, Hitachi, Japan

Presented at SAC 2014

28 / 44



MAC Algorithm for Microcontrollers
Message Authentication Code (MAC)

° MACK(m) =T @
e Authenticity, no confidentiality

e Same key for MAC generation and verification
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MAC Algorithm for Microcontrollers

Message Authentication Code (MAC)
e MACk(m) =71
e Authenticity, no confidentiality

e Same key for MAC generation and verification

Microcontroller
o Cheap 8/16/32-bit processor: USD 25-50¢
e Applications: home, medical, industrial, ...

e Ubiquitous: 30-100 in any recent car
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Design

Requirements

e Drop-in replacement for AES-CMAC
(variant of CBC-MAC for variable-length messages)

e Same functionality and security
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Design

Requirements

e Drop-in replacement for AES-CMAC
(variant of CBC-MAC for variable-length messages)

e Same functionality and security

Speed
e “Ten times faster than AES”

Approach

e Dedicated design for microcontrollers
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Commonly used MACs

Based on (cryptographic) hash function
e Example: HMAC, SHA3-MAC
e Large block size, collision resistance unnecessary
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Commonly used MACs

Based on (cryptographic) hash function
e Example: HMAC, SHA3-MAC
e Large block size, collision resistance unnecessary

Based on universal hashing
e Examples: UMAC, GMAC, Poly1305

e Requires: nonce, constant-time multiply, long tags

Based on block cipher
e Example: CMAC

e Problem: ten times too slow!
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Our Approach

Every cycle counts!
e Avoid load/store: keep data in registers
e Avoid bit masking

e Make optimal use of instruction set
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Our Approach

Every cycle counts!
e Avoid load/store: keep data in registers
e Avoid bit masking

e Make optimal use of instruction set

Bridging the gap
e Cryptanalysis

e Provable security

o Implementation
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Primitive

Which primitive?
e Cryptographic hash function X
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Primitive

Which primitive?
e Cryptographic hash function X
e Universal hash function X
e Block cipher X

) — Even-Mansour Block Cipher v/
e |deal permutation X

Related-key attacks

e Insecure: choose uniformly random keys!
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Chaskey: Mode of Operation

e Split m into ¢ blocks of n bits

e Top: Imy|=n
° }{i =2K
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Chaskey: Mode of Operation

e Split m into ¢ blocks of n bits
e Top: |my| =n, bottom: 0 < |my| <n
° }{i = 2]{1 }{j =4K

mq mo my Ky K,

mi mso my|[10% Ky K
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Chaskey: Mode of Operation: Phantom XORs

e Split m into ¢ blocks of n bits
e Top: |my| =n, bottom: 0 < |my| <n
° K1 :2K, K2:4K
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Chaskey: Mode of Operation: Phantom XORs

e Split m into ¢ blocks of n bits

bottom: 0 < |my| <n

° K1:2K, K2:4K

lmy| =n

e Top:
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Chaskey: Mode of Operation: Block-cipher-based

e Split m into ¢ blocks of n bits
e Top: |my| =n, bottom: 0 < |my| <n
° ]{i = 2]{1 1{2 =4K

my my my
||
0 4,$ Ex\k g Erxik p -1 Exx pd KoKk
my ma myl||10*
||
0 4& Ex\k g Erxik p -1 Exx pd K@K | K
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Chaskey: Mode of Operation: Block-cipher-based

e Split m into ¢ blocks of n bits

e Top: |my| =n, bottom: 0 < |my| <n
° ]{i = 2]{1 1{2 =4K

mi ma my
||
0 4,$ Ex\k g Ex\x {1 Ex|x p& KoKk
my ma myl||10*
||
0 4& Ex\k g Ex|x {1 Ex|x p& K@K | K

variant of FCBC [BR'00]

E '
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Chaskey: Mode of Operation: Compared to CMAC

e Split m into ¢ blocks of n bits

e Top: |my| =n, bottom: 0 < |my| <n
o K1 =2K, Ky =4K

variant of CMAC [IK'03]

my my me K4

0 H; Ex\x g Ex|x 1 Er|x \l.'} \l.'} Ex\x
my mg my|| 10K

0 H; Ex\x g Ex|x 1 Ex |k p& \l.'} Ex|x
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e Split m into ¢ blocks of n bits

e Top: |my| =n, bottom: 0 < |my| <n
o K1 =2K, Ky =4K

(1) Ex(0") —» K

variant of CMAC [IK'03]
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Chaskey: Mode of Operation: Compared to CMAC

e Split m into ¢ blocks of n bits

e Top: |my| =n, bottom: 0 < |my| <n
o K1 =2K, Ky =4K

(1) Ex(0") —» K
my ma my K4
0 4>$ Ex\x g Ex|x 1 Er|x \l.'} \l.'} Ex\x
@ Even-Mansour
my mg my|| 10K

Ex\x

I

ZZKHA

l;KHA

variant of CMAC [IK'03]
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Chaskey: Mode of Operation: Compared to CMAC

e Split m into ¢ blocks of n bits
e Top: |my| =n, bottom: 0 < |my| <n

o K1 =2K, Ky = 4K variant of CMAC [IK'03]
(1) Ex(0") = K (3) not in CMAC
mi ma my K K & Ky

0 4’$ El\"HA" g El\"HI\" oo

@ Even-Mansour

mq mso

0 4’$ El\"HA" g El\"HI\" oo
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Cryptanalysis

MAC forgery: find new valid (m,7)
e D: data complexity (# chosen plaintexts)

e T time complexity (# permutation eval.)

Attacks
e Internal collision: D = 27/2
e Key recovery: T~2"/D

e Tag guessing: ~ 2! guesses

Chaskey parameters
e Key size, block size: n = 128, tag length: ¢t > 64
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Permutation

U1 Vo V2 v3
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Design
¢ Add-Rot-XOR (ARX)
o Inspired by SipHash
e 32-bit words

e 8 rounds

Properties

e Rotations by 8, 16:
faster on 8-bit uC

e Fixed point: 0 — 0

e Cryptanalysis: rotational,
(truncated) differential,
MitM, slide,... see paper!
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Chaskey: Speed Optimized (gcc -02)

. . Data ROM Speed
Microcontroller Algorithm [byte] [byte] [cycles/byte]
Cortex-M0 AES-128-CMAC 16 13492 173.4

128 13492 136.5

Chaskey 16 1308 21.3

128 1308 18.3

Cortex-M4 AES-128-CMAC 16 28524 118.3
128 28524 105.0

Chaskey 16 908 10.6

128 908 7.0
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Chaskey: Size Optimized (gcc -Os)

. . Data ROM Speed
Microcontroller Algorithm [byte] [byte] [cycles/byte]
Cortex-M0 AES-128-CMAC 16 11664 176.4

128 11664 140.0

Chaskey 16 414 21.8

128 414 16.9

Cortex-M4 AES-128-CMAC 16 10925 127.5
128 10925 89.4

Chaskey 16 402 16.1

128 402 11.2
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Conclusion and Current Status

Chaskey:
MAC algorithm for 32-bit microcontrollers

e Addition-Rotation-XOR (ARX)
e Even-Mansour block cipher
e ARM Cortex-M: 7-15x faster than AES-128-CMAC
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Conclusion and Current Status

Chaskey:
MAC algorithm for 32-bit microcontrollers

e Addition-Rotation-XOR (ARX)
e Even-Mansour block cipher
e ARM Cortex-M: 7-15x faster than AES-128-CMAC

Standardization
e Chaskey: currently in study period
e ISO/IEC JTC1 SC27: MAC standardization
e ITU-T SG17: crypto for loT, ITS
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Questions?




Supporting Slides
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Security Proof

MAC forgery: find new valid (m,7)
e D: block cipher (PRP) queries

e T permutation queries

Standard Model
2

2D 1
° Advg‘]}al;skey—B(% D7 7‘) < 2—n + ? + AdV%prp(D, T‘)

Ideal Permutation Model
2D 1  D?+2DT
¢ Advgﬁgskey (¢, D,r) < “on + 5 + —
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