Symmetric-key Cryptography: an Engineering Perspective

Nicky Mouha

¹ESAT/COSIC, KU Leuven and iMinds, Belgium ²Project-team SECRET, Inria, France

ASK 2014 — December 19, 2014

Overview

Engineering Perspective

- Design, analysis, implementation
- Basic concepts and techniques

Overview

Engineering Perspective

- Design, analysis, implementation
- Basic concepts and techniques

Two Parts

- Hash functions
- MAC algorithms

Overview

Engineering Perspective

- Design, analysis, implementation
- Basic concepts and techniques

Two Parts

- Hash functions
- MAC algorithms

Simplified View

- Small inaccuracies, details missing
- Incomplete study: citations missing

Part I: Hash Functions

Hash Function

Hash Function h

• Generates a short "fingerprint" of a message

Security Requirements

- One-way function: given Y, hard to find m:h(m)=Y
- Collision resistant function: hard to find $m \neq m' : h(m) = h(m')$
- . .

SHA-3 Competition (2008-2012)

Hash Function

Hash Function h

• Generates a short "fingerprint" of a message

Security Requirements

- One-way function: given Y, hard to find m:h(m)=Y
- Collision resistant function: hard to find $m \neq m' : h(m) = h(m')$
- . .

SHA-3 Competition (2008-2012)

Permutation-Based Hash Functions

Hash Functions Based on Permutations

- Simpler to design: no key schedule
- Block-cipher-based: see later

(Cryptographic) Permutation

- Provable security: statistical object (random permutation)
- Cryptanalysis: deterministic algorithm (no "distinguishers")

Hash Function Rate

Hash Function Rate α

- $\quad \bullet \ \, \alpha = \frac{ \text{data processed per permutation call (in bits)} }{ \text{permutation size (in bits)} }$
- Note: various definitions of "rate" exist!

Hash Function Rate

Hash Function Rate α

- $\bullet \ \alpha = \frac{ \text{data processed per permutation call (in bits)} }{ \text{permutation size (in bits)} }$
- Note: various definitions of "rate" exist!

Ideal Construction

• Rate-1 hash function: $\alpha = 1$

Rate-1 Hash Function: First Attempt

Simplest Rate-1 Hash Function

Rate-1 Hash Function: First Attempt

Collision: Correcting Block Attack

Rate-1 Hash Function: Second Attempt

Another Rate-1 Hash Function

Rate-1 Hash Function: Second Attempt

Observation

Rate-1 Hash Function: Second Attempt

Collision Attack (Black et al., Crypto '02)

Impossibility Result

Black et al. (Eurocrypt '05)

- ullet Compression function from $n ext{-bit}$ permutation
- Information-theoretic: f_1 , f_2 can be any function
- Generic collision attack: at most $n + \lceil \log_2(n) \rceil$ queries

Rogaway-Steinberger (Eurocrypt '08)

- ullet Compression function from k n-bit permutations
- Information-theoretic: f_i can be any function
- Generic collision attack: $2^{n[1-(m-0.5s)/k]}$

Rogaway-Steinberger (Eurocrypt '08)

- ullet Compression function from k=3 n-bit permutations
- Information-theoretic: f_i can be any function, m=2, s=1
- Generic collision attack: $2^{n[1-(2-0.5\cdot 1)/3]}=2^{n/2}$

Mennink-Preneel (Crypto '12)

- $\bullet \ \ {\rm Compression} \ \ {\rm function} \ \ {\rm from} \ \ k=3 \ \ n{\rm -bit} \ \ {\rm permutations}$
- Constructions with only XORs, first systematic analysis
- Optimal collision resistance: $2^{n/2}$

Why Not One Big Permutation?

- ullet 2n-bit permutation instead of n-bit
- Same generic collision attack: $2^{n/2}$
- More efficient than three n-bit permutations?

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Remarks

- Not intuitive: $b \to b$ bits: $(2^b)^{2^b} = 2^{b2^b}$ functions
- Not rigorous: based on design choices and attacks
- How to count "operations"?

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Remarks

- Not intuitive: $b \to b$ bits: $(2^b)^{2^b} = 2^{b2^b}$ functions
- Not rigorous: based on design choices and attacks
- How to count "operations"?

Next Slides: Scaling Law Examples

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Rijndael (256-bit key): 8-bit Words

• 128/192/256-bit block size: 14 rounds

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Rijndael (256-bit key): 8-bit Words

128/192/256-bit block size: 14 rounds

Skein: 64-bit Words

- 256/512-bit block/key size: 72 rounds
- 1024-bit block/key size: 80 rounds
- Overdesign? Best (non-biclique) attack is on 36 rounds (Yu et al., SAC '13)

Scaling Law: Variable Word Size

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

Scaling Law: Variable Word Size

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

SHA-2

- SHA-256: 768-to-256-bit: 64 rounds (32-bit words)
- SHA-512: 1536-to-512 bit: 80 rounds (64-bit words)

Scaling Law: Variable Word Size

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

SHA-2

- SHA-256: 768-to-256-bit: 64 rounds (32-bit words)
- SHA-512: 1536-to-512 bit: 80 rounds (64-bit words)

Keccak

- 800-bit permutation: 22 rounds (32-bit words)
- 1600-bit permutation: 24 rounds (64-bit words)
- Note: zero-sum distinguisher for full-round 1600-bit permutation (Boura et al., Duan-Lai)

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- Close! If 15 rounds: three small or one big: same cost

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- Close! If 15 rounds: three small or one big: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- Close! If 15 rounds: three small or one big: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

• b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- Close! If 15 rounds: three small or one big: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

- b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total
- Four n-bit or one 2n-bit permutation: same cost

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- Close! If 15 rounds: three small or one big: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

- b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total
- Four n-bit or one 2n-bit permutation: same cost
- 272-bit Spongent: 5x lower throughput than 256-bit PHOTON (Bogdanov et al., IEEE Trans. Comp. 2013)

Hash Functions with $2^{n/2}$ Collision Resistance

Rate-1 Hash Function ($\alpha = 1$)

- Impossible (Black et al., Eurocrypt '05)
- Generic collision attack: at most $n + \lceil \log_2(n) \rceil$

Hash Functions with $2^{n/2}$ Collision Resistance

Rate-1 Hash Function $(\alpha = 1)$

- Impossible (Black et al., Eurocrypt '05)
- Generic collision attack: at most $n + \lceil \log_2(n) \rceil$

Rate-0.5 Hash Function ($\alpha = 0.5$)

- Three *n*-bit permutations
- One 2*n*-bit permutation

Hash Functions with $2^{n/2}$ Collision Resistance

Rate-1 Hash Function $(\alpha = 1)$

- Impossible (Black et al., Eurocrypt '05)
- Generic collision attack: at most $n + \lceil \log_2(n) \rceil$

Rate-0.5 Hash Function ($\alpha = 0.5$)

- Three *n*-bit permutations
- One 2*n*-bit permutation

Higher Rate Possible? $(0.5 < \alpha < 1)$

- Yes, arbitrarily close to $\alpha = 1!$
- See next slide...

Sponge Function

Sponge Function

•
$$\alpha = \frac{r}{r+c}$$

Example

• SHA3-256: c = 512, r + c = 1600, $\alpha = 0.68$

Concatenate-Permute-Truncate

Concatenate-Permute-Truncate

•
$$\alpha = \frac{r}{r+c}$$

Example

• Grindahl-256: r=32, r+c=416, $\alpha=0.08$ (Note: low α , but compensated by weak π)

Merkle-Damgård with Davies-Meyer

Merkle-Damgård with Davies-Meyer

•
$$\alpha = \frac{r}{r+c}$$

Example

• SHA256: c = 256, r = 512, $\alpha = 0.67$

Considerations

Lightweight

- Small hardware implementation
- Achieved by small permutation!
- $\bullet \ \ \text{Typically very low} \ \alpha$

Considerations

Lightweight

- Small hardware implementation
- Achieved by small permutation!
- Typically very low α

Simplicity

- e.g. JH: one 1024-bit permutation for all output sizes
- Downside: not best tradeoff for small outputs

Considerations

Lightweight

- Small hardware implementation
- Achieved by small permutation!
- Typically very low α

Simplicity

- e.g. JH: one 1024-bit permutation for all output sizes
- Downside: not best tradeoff for small outputs

Other Criteria

- Software: register pressure, instruction set, parallelism,...
- Hardware: throughput, latency, power, energy,...
- Both: message length, reuse of function/library, secure implementation, interoperability, standards compliance,...

Conclusion

Permutation-Based Hash Functions

- Engineering approach
- Tradeoffs for theory/cryptanalysis/implementation
- Simplified model: inaccuracies in figures, designs

Conclusion

Permutation-Based Hash Functions

- Engineering approach
- Tradeoffs for theory/cryptanalysis/implementation
- Simplified model: inaccuracies in figures, designs

Goal

- Help to understand design choices
- No intention to critize certain designs!
- Feedback is welcome

Part II: MAC Algorithms

Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers

Nicky Mouha¹, Bart Mennink¹, Anthony Van Herrewege¹, Dai Watanabe², Bart Preneel¹, Ingrid Verbauwhede¹

 $^1{\sf ESAT/COSIC},~{\sf KU}$ Leuven and iMinds, Belgium $^2{\sf Yokohama}$ Research Laboratory, Hitachi, Japan

Presented at SAC 2014

MAC Algorithm for Microcontrollers

Message Authentication Code (MAC)

- $\mathsf{MAC}_K(m) = \tau$
- Authenticity, no confidentiality
- Same key for MAC generation and verification

MAC Algorithm for Microcontrollers

Message Authentication Code (MAC)

- $\mathsf{MAC}_K(m) = \tau$
- Authenticity, no confidentiality
- Same key for MAC generation and verification

Microcontroller

- Cheap 8/16/32-bit processor: USD 25-50¢
- Applications: home, medical, industrial,...
- Ubiquitous: 30-100 in any recent car

Design

Requirements

- Drop-in replacement for AES-CMAC (variant of CBC-MAC for variable-length messages)
- Same functionality and security

Design

Requirements

- Drop-in replacement for AES-CMAC (variant of CBC-MAC for variable-length messages)
- Same functionality and security

Speed

• "Ten times faster than AES"

Design

Requirements

- Drop-in replacement for AES-CMAC (variant of CBC-MAC for variable-length messages)
- Same functionality and security

Speed

• "Ten times faster than AES"

Approach

Dedicated design for microcontrollers

Based on (cryptographic) hash function

- Example: HMAC, SHA3-MAC
- · Large block size, collision resistance unnecessary

Based on (cryptographic) hash function

- Example: HMAC, SHA3-MAC
- Large block size, collision resistance unnecessary

Based on universal hashing

- Examples: UMAC, GMAC, Poly1305
- Requires: nonce, constant-time multiply, long tags

Based on (cryptographic) hash function

- Example: HMAC, SHA3-MAC
- Large block size, collision resistance unnecessary

Based on universal hashing

- Examples: UMAC, GMAC, Poly1305
- Requires: nonce, constant-time multiply, long tags

Based on block cipher

Example: CMAC

Based on (cryptographic) hash function

- Example: HMAC, SHA3-MAC
- Large block size, collision resistance unnecessary

Based on universal hashing

- Examples: UMAC, GMAC, Poly1305
- Requires: nonce, constant-time multiply, long tags

Based on block cipher

- Example: CMAC
- Problem: ten times too slow!

Our Approach

Every cycle counts!

- Avoid load/store: keep data in registers
- Avoid bit masking
- Make optimal use of instruction set

Our Approach

Every cycle counts!

- Avoid load/store: keep data in registers
- Avoid bit masking
- Make optimal use of instruction set

Bridging the gap

- Cryptanalysis
- Provable security
- Implementation

Which primitive?

• Cryptographic hash function X

- Cryptographic hash function X
- Universal hash function X

- Cryptographic hash function X
- Universal hash function X
- Block cipher X

- Cryptographic hash function X
- Universal hash function X
- Block cipher X
- Ideal permutation X

- Cryptographic hash function X
- Universal hash function X
- Block cipher X
 Ideal permutation X

 \[
 \text{Even-Mansour Block Cipher ✓}
 \]
 - $P \xrightarrow{K} \pi \xrightarrow{K} C$

Which primitive?

- Cryptographic hash function X
- Universal hash function X
- Block cipher X
 Ideal permutation X

 \[
 \text{Even-Mansour Block Cipher ✓}
 \[
 \text{Answer of the content of the cont

Related-key attacks

Insecure: choose uniformly random keys!

Chaskey: Mode of Operation

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$
- $K_1 = 2K$

Chaskey: Mode of Operation

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

Chaskey: Mode of Operation: Phantom XORs

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

Chaskey: Mode of Operation: Phantom XORs

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

Chaskey: Mode of Operation: Block-cipher-based

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

Chaskey: Mode of Operation: Block-cipher-based

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

variant of FCBC [BR'00]

Chaskey: Mode of Operation: Compared to CMAC

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

variant of CMAC [IK'03]

Chaskey: Mode of Operation: Compared to CMAC

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$

variant of CMAC [IK'03] • $K_1 = 2K$, $K_2 = 4K$ (1) $E_K(0^n) \to K$

Chaskey: Mode of Operation: Compared to CMAC

- Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$
- $K_1 = 2K$, $K_2 = 4K$

g = 4K variant of CMAC [IK'03]

Chaskey: Mode of Operation: Compared to CMAC

- ullet Split m into ℓ blocks of n bits
- Top: $|m_{\ell}| = n$, bottom: $0 \le |m_{\ell}| < n$

Cryptanalysis

MAC forgery: find new valid (m, τ)

- D: data complexity (# chosen plaintexts)
- T: time complexity (# permutation eval.)

Attacks

• Internal collision: $D \approx 2^{n/2}$

• Key recovery: $T \approx 2^n/D$

• Tag guessing: $\approx 2^t$ guesses

Chaskey parameters

• Key size, block size: n = 128, tag length: $t \ge 64$

Permutation

Design

- Add-Rot-XOR (ARX)
- Inspired by SipHash
- 32-bit words
- 8 rounds

Properties

- Rotations by 8, 16: faster on 8-bit μ C
- Fixed point: $0 \to 0$
- Cryptanalysis: rotational, (truncated) differential, MitM, slide,... see paper!

Chaskey: Speed Optimized (gcc -O2)

Microcontroller	Algorithm	Data [byte]	ROM [byte]	Speed [cycles/byte]
Cortex-M0	AES-128-CMAC	16 128	13 492 13 492	173.4 136.5
	Chaskey	16 128	1 308 1 308	21.3 18.3
Cortex-M4	AES-128-CMAC	16 128	28 524 28 524	118.3 105.0
	Chaskey	16 128	908 908	10.6 7.0

Chaskey: Size Optimized (gcc -Os)

Microcontroller	Algorithm	Data [byte]	ROM [byte]	Speed [cycles/byte]
Cortex-M0	AES-128-CMAC	16 128	11 664 11 664	176.4 140.0
	Chaskey	16 128	414 414	21.8 16.9
Cortex-M4	AES-128-CMAC	16 128	10 925 10 925	127.5 89.4
	Chaskey	16 128	402 402	16.1 11.2

Conclusion and Current Status

Chaskey:

MAC algorithm for 32-bit microcontrollers

- Addition-Rotation-XOR (ARX)
- Even-Mansour block cipher
- ARM Cortex-M: 7-15× faster than AES-128-CMAC

Conclusion and Current Status

Chaskey:

MAC algorithm for 32-bit microcontrollers

- Addition-Rotation-XOR (ARX)
- Even-Mansour block cipher
- ARM Cortex-M: 7-15× faster than AES-128-CMAC

Standardization

- Chaskey: currently in study period
- ISO/IEC JTC1 SC27: MAC standardization
- ITU-T SG17: crypto for IoT, ITS

Questions?

Supporting Slides

Security Proof

MAC forgery: find new valid (m, τ)

- D: block cipher (PRP) queries
- T: permutation queries

Standard Model

•
$$\mathbf{Adv}^{\mathsf{mac}}_{\mathsf{Chaskey-B}}(q, D, r) \leq \frac{2D^2}{2^n} + \frac{1}{2^t} + \mathbf{Adv}^{\mathsf{3prp}}_E(D, r)$$

Ideal Permutation Model

•
$$\mathbf{Adv}_{\mathrm{Chaskey}}^{\mathsf{mac}}$$
 $(q, D, r) \le \frac{2D^2}{2^n} + \frac{1}{2^t} + \frac{D^2 + 2DT}{2^n}$